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Abstract
cation method is proposed for early diagnosis of the diabetic retinopathy using mfERG data. MfERG records were obtained from eyes of
healthy individuals and patients with diabetes at different stages. For each mfERG record, 103 local responses were extracted. Amplitude

The multifocal electroretinogram (mfERG) is a newly developed electrophysiological technique. In this paper, a classifi-

value of each point on all the mfERG local responses was looked as one potential feature to classify the experimental subjects. Feature sub-
sets were selected from the feature space by comparing the inter-intra distance. Based on the selected feature subset, Fisher’s linear classi-
fiers were trained. And the final classification decision of the record was made by voting all the classifiers’ outputs. Applying the method
to classify all experimental subjects, very low error rates were achieved. Some crucial properties of the diabetic retinopathy classification
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method are also discussed.
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Diabetic retinopathy (DR) is one of the major
causes of blindness in modern society. It is a common
micro vascular complication in patients with diabetes.
As the diabetic retinopathy is a progressive disease,
according to the level of severity, it could be classified
as stages of DR absent, non-proliferative DR, and

proliferative DR, While the patients usually cannot
be aware of the impairment of the disease at initial
stages of diabetic retinopathy, early detection of the
disease is very important.

The multifocal electroretinogram (mfERG)!? ¥
is a newly developed electrophysiological technique. It
allows fast deriving of electric responses from many
retinal areas simultaneously. Retinal areas are illumi-
nated by flashing hexagonal blocks on a screen placed
in front of the eye. And the local ERG-like respons-
es, each corresponding to a stimulated retinal area,

can be extracted using a cross-correlation tech-

4] In recent years, mfERG was used to ex-

nique
plore diabetic eyes with retinopathy or before clinical

signs of retinopathy[s_sl.

Among those researches, amplitude reduction
and delay of implicit time of the mfERG responses

were reported evolving with progression of the

[5—8]

retinopathy But in early stages of the diabetic

retinopathy, infections on m{ERG response are weak
and are not easy to be identified. And the recognition
rate between healthy subjects, subjects without DR
and subjects with early stages of DR is still low at
present.

Besides the weak sign of DR shown in mfERG
responses, the other reason of the low diagnosis rate
of the disease is that we are short of methods to ex-
plore the abundant information that mfERG provides.
Although mfERG gives many local retinal responses

simultaneously, in usual processing of m{ERG re-

sultsm, all these local responses are averaged into 1
to 6 traces to simplify the data analysis. And this re-
sponses averaging step obviously reduces the available
information contained in mfERG result.

In this study, four groups of persons, normal
ones, diabetics without apparent retinopathy, pa-
tients having non-proliferative DR and those having
proliferative DR, underwent mfERG tests. A new
strategy was proposed to classify the mfERG results.
The strategy included definition of original features,
feature selection and classifier training. Additionally,
to explore the local mfERG responses, an evaluation
value was computed to combine all the classifier out-
puts for the local responses. And the classification de-
cision for a subject was made based on sign of the e-
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valuation value.
1 Experimental data acquisition

The experimental subjects to be examined by
mfERG instrument included 31 eyes of healthy per-
sons and 129 eyes of patients with non-insulin depen-
dent diabetes mellitus (NIDDM). All the diabetic
eyes also underwent ophthalmoscopic examination and
fluorescein angiography. Subjects with visible media
opacity or other history of ocular disease or surgery
were excluded from the study.

The retinopathy was graded by experts from
General Hospital of Chinese PLA, following the Early

Treatment Diabetic Retinopathy Study (ETDRS)™!
protocol. Totally 58 diabetic eyes were classified as
retinopathy absent (labeled as NDR in the follow-
ing), 45 eyes had mild to moderate non-proliferative
DR (NPDR), and 26 diabetic eyes had proliferative
DR (PDR) (Table 1). The tenets of the Declaration
of Helsinki were followed and the informed consent
was obtained from each participant.
Table 1. Characteristics of experimental subjects

Gender Duration of Corrected
(M/F) diabetes(y) visual acuity

Subject Number Age

Normal 31 45+19 14/17 / 20/20
NDR 58 6113 34/24 7+5 20/20
NPDR 45 62+10 25/20 16+10 =20/30

PDR 26 65+17 15/11  25+10 =20/50

The mfERG examinations were performed on a
visual evoked response imaging system ( Veris Sci-

ence ™ 5.0, Electro-Diagnostic Imaging, USA).
The visual stimulation consisted of a 103-scaled-
hexagons array on a 29 cm X 38 cm CRT screen,
placed 40 cm in front of the tested eyes and stimulat-

ing the central retina. The luminance was 200 cd/m’
in white hexagons and 2 cd/m” in black hexagons.

Each stimulus hexagon flickered at a rate of 75
Hz. The binary m-sequence which was used to con-

trol the states of the hexagons included M steps. The
raw recording time was 3 min 38 s for each mfERG
record, and the duration was broken into 8 segments,
27 s long each, with a brief rest period between each
segment.

Pupils were dilated maximally (=8 mm) with
eye drops. A Burian-Allen bipolar contact lens elec-
trode was placed on the tested eye, and the other eye
was patched. The retinal responses from the electrode

were band pass filtered (10—300 Hz) and amplified
(50000 gain).

For each mfERG record, 103 local responses
were derived. Every local mfERG response corre-
sponded to a small retinal area stimulated by a hexag-
onal block on the stimulus screen, named by a se-
quence number from 1 to 103. Each local response,
covered 200 ms long, was combined with two kinds
of mfERG results. The initial part waveform, 100 ms
in length, was exported from software of the visual e-
voked response imaging system. And the waveform

was treated as m{ERG first order kernel’® ™) in the
software. The latter 100 ms waveform, representing
mfERG first slice of second order kernel> ™ in the
software, was also exported. Waveforms of all the lo-
cal responses were digitized into arrays of amplitude
value (Fig.1), at the sampling frequency of 1000 Hz

(sampling interval was 1 ms).
2 Data analysis method

The data analysis procedure included a feature e-
valuation/selection step followed by a linear classifica-
tion. There were 4 classes of m{ERG records, labeled
as Normal, NDR, NPDR and PDR in Table 1.

Amplitude value of each point on the local
mfERG response was used as one potential feature to
discriminate the subjects. As 200 amplitude values
being obtained from each local mfERG response, the
number of all available features for a mfERG record-
ing equaled 200 features X 103 local mfERG respons-
es, which means the original feature space has the di-
mension of 200 X 103. To design practical classifiers,
the most informative feature subset should firstly be
selected from the feature space.

2.1 Feature selection method

For the 200 original features within each local
miERG response, a feature subset having lower di-

mension was selected. And the criterion of inter-intra
distance'™®! was used to evaluate the discriminative
power of the feature subset between different classes
of the experimental subjects. The criterion function

for the feature subset X, is
J(X,)) = trace(S;le)
X, = [J:il,xiz,"',x;] (1)
i =1,2,--,103
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Waveform of each local mfERG response covered 200 ms long. This figure is to illustrate the method in data acquisition. Wave-

forms did not come from experimental data. Description of the image is given in the text.

where ¢ refers to the sequence number of the local re-
sponse, from 1 to 103. The feature subset X; is d-di-
mensional, which means that X, is composed of d
features selected from the 200 features contained in
the local response array. The §, and S, are the be-
tween-class scatter matrix and the within-class scatter
matrix of X;, respectively. According to the defini-
tion of the criterion function, feature subset with big-
ger J (X)) value should have better classification per-
formance.

To evade computational complexity in full
searching of the best d-dimensional X; within the 200
original features, the sequential forward selection
(SFS) algorithm[m] was used to find the close-opti-

mal feature subset X, to maximize J (X ).
2.2 Training of linear classifier

After all feature subsets X, were selected from
the 1st to 103rd local mfERG responses, we used the
two-category linear classifier to classify the experi-
mental subjects. Discriminant function of the classifi-
er for each selected feature vector X is g;(X;)

gi(Xi) = W;rxi + wi)
W, = [wil’wiZ’“.’wid]T (2)
i =1,2,--,103
where W, is the weight vector, and wi, is the thresh-
old weight. The decision rule of the linear classifier is
if g;(X;) =0, X, €Cl
if g,(X;) <0, X,€C2 (3)

where C1 and C2 are labels of the two classes to be
classified.

The principles of Fisher’s linear classifier "+ 12]

was used to compute parameters W, and wi, of the
discriminant function g; ( X;). To obtain these pa-
rameters, Egs. (4)—(6) were applied to the C1 and
C2 classes of experimental subjects.

W, = 5;1(7”1 - m;) (4)
where S, is the within-class scatter matrix of X;, m,
and m, are sample mean of the C1 and C2 class, re-
spectively. Giving W,, the threshold weight wj is
(nl m; + nzm;)
("1 + nz)

(5)

Wy = —

where
m;=i2w;‘Txi i=12 (6)
nixec
and n, and n, are samples in classes C1 and C2, re-

spectively.
2.3 Classification results for all local responses

Given mfERG results of C1 and C2 classes of
experimental subjects, there should be 103 selected
d-dimensional feature vectors X, (i =1, 2, ---, 103)
and discriminant functions g; (X;), (i =1, 2, -,
103), each corresponding to a local mfERG response.
This means that for one subject to be classified, there
are 103 classification results when every function
g:(X;) is applied to the local mfERG response corre-
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spondently. To obtain the final classification decision
of the subject, a vote value EV was computed to
combining the 103 classification outputs. The vote

rule is
103
EV = >p
i=1
p, =1 X, €cCl
where, p=-1 X, €C2 (7)

The classification rule of the subject is: if EV =0,
the subject is classified to C1 class, else if EV <0,
then the subject is classified to class C2.

2.4 Classification error estimation

Applying the classification method to each test
sample, the classification error rate could be estimated

by

Misclassified test samples (8)

Error rate =
All test samples

3 Result

The method of mfERG data analysis discussed
before was used on those four classes of subjects (Ta-
bles 1 and 2). Those subjects’ retinal state changed
from healthy (Normal) to proliferative retinopathy
(PDR), according to progression of the diabetic
retinopathy. To classify the experimental subjects,
Normal, NDR, NPDR and PDR, five two-category
classification problems were solved ( No. 1—5 in
Table 2).

Table 2.

Also shown in Table 2, about a half experimen-
tal subjects were randomly selected to form the train-
ing data set for the feature selection and classifier
training steps, and the rest of them were grouped as a
test data set to compute error rates of the classifica-
tion method.

Firstly, the feature selection method was applied
to the training set of the four classes of subjects. The
dimension of the target feature subset was set to d =
6. And 103 feature subsets (X;, i =1,2, -, 103)
were selected from the feature space, each cotre-
sponding to a local mfERG response.

Having the feature subset selected, for every
classification problem in Table 2, coefficients of the
103 discriminant function g; (X;) were trained fol-
lowing formulas (4)—(6), over the data in training
set.

To test performance of the trained classifiers,
the function g, (X;) were applied to each subject in
the test set. The EV value was given by (7) to com-
bine the outputs of all g; (X;), and the subject was
classified according to sign of the EV value. The
classification error rate was estimated by (8). The
average EV values among all subjects in each test set
are also given in Table 2. Table 3 gives the confusion
matrix when classifying the test subjects for all the
classification problems in Table 2.

Classification results for the four categories of experimental subjects

Classification

Classification results

No. target (C1/C2) Training set Test set EV Error rate
(average value) (%)
Normal 15 16 27
1 44 45 2.2
NDR 29 29 -35
Normal 15 16 65
2 37 39 0
NPDR 22 23 -68
NDR 29 29 59
3 51 52 0
NPDR 22 23 -53
NDR 29 29 75
4 42 42 0
PDR 13 13 -81
NPDR 22 23 35
5 35 36 8.3
PDR 13 13 - 18
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Table 3. Confusion matrices for the classification problem in
Table 2
No. True labels Classification Total
Normal NDR
1 Normal 16 0 16
NDR 1 28 29
Normal NPDR
2 Normal 16 0 16
NPDR 0 23 23
NDR NPDR
3 NDR 29 0 29
NPDR 0 23 23
NDR PDR
4 NDR 29 0 29
PDR 0 13 13
NPDR PDR
5 NPDR 21 2 23
PDR 1 12 13

It can be seen that No.2—No. 4 experiments got
zero classification error rate. And the error rate in
discriminating the Normal subjects from the NDR
subjects was 1/45 (2.2%). Correspondingly shown
in Table 3 that one Normal subject was mistakenly
classified to NDR class. In classification between the
NPDR and PDR subjects (No. 5 experiment in Table
2), the error rate was 3/36 (8.3% ). The misclassi-
fied subjects were two NPDR subjects being regarded
as PDR, and one PDR subject being regarded as
NPDR.

There is another noticeable result in Tables 2 and
3. The NDR eyes were discriminated from the Nor-
mal eyes at 2.2% error rate. As we knew, the NDR
subjects discussed here referred to those diabetic eyes
having no ophthalmoscopically detectable retinopa-
thy, which means that fundus photograph of all those
NDR subjects did not show any apparent abnormities
caused by diabetes.

Good discrimination of these two kinds of experi-
mental subjects confirmed the existence of retinal dys-
function in diabetic eyes without observable retinopa-
thy symptoms. And these retinal dysfunctions could
be identified by analyzing the mfERG data at a very
high accuracy rate.

According to the classification results, our data
analysis method provided a great classification perfor-
mance for the four groups of experimental subjects.
This method included defining the amplitude value of
each point on the mfERG responses as a potential fea-
ture, selecting the most discriminative feature subset
from all features for each local mfERG response, and

training the linear classifiers. For one test subject,
the trained linear classifiers were applied on all of its
local mfERG responses. Therefore the subject could
be classified by voting on all the local classification re-
sults.

4 Discussion

Besides high accuracy, a good disease classifica-
tion method should have good stability and ability to
predict the progression of the disease. Two tests are
presented in this section to discuss the properties of
our DR classification method.

4.1 Stability of the method

Firstly, because the training and test data set in
Table 2 were formed by choosing samples from the o-
riginal data set randomly, and intersection between
them was kept empty, the low classification error
rates preliminary proved stability of the method. To
further testify this judgment, classifications between
the NDR and NPDR samples were performed when
different groups of subjects were chosen to form the
training and test data set.

According to mfERG data obtained from 58
NDR and 45 NPDR subjects, shown in Table 1, 29
NDR and 22 NPDR subjects were randomly selected
to compose the training set, and for each of the 103
local mfERG responses the best 6-dimensional feature
vector and the linear classifier were computed based
on the training set. After that, the test set, including
29 NDR and 23 NPDR subjects, was randomly se-
lected from the 58 NDR and 45 NPDR subjects for 10
times. The classification result for each of the 10 test
set is shown in Table 4, so are the average and stan-
dard deviation values.

Table 4. Classification between NDR and NPDR under differ-
ent test set grouping
EV (average value) Error rate
No.
NDR NPDR (%)
1 67 - 46 0
2 60 -32 0
3 64 -37 0
4 37 -25 7.7
5 63 -53 0
6 66 -35 0
7 62 -32 0
8 43 -27 5.8
9 47 -30 1.9
10 40 -35 3.8
Average valve g4 61417 -35.2+8.5 1.92+2.7

+SD
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According to Table 4, the classification error
rates kept low in 10 tests with different data group-
ing. This confirmed our judgment for good stability
of our DR classification method. In addition, com-
paring the EV value and corresponding error rate in
Table 4, we found that the closer the EV value ap-
proached to zero, the higher probability of classifica-
tion error happened (No.4 and 8 in Table 4). This
relationship suggested the evaluation ability of the
EV wvalue on risk of error classification.

4.2 Relationship between the classifiers and the
progression of retinopathy

To test whether our method could indicate the
progression of DR, No. 4 classification problem in
Table 2, discriminating between the NDR and NPDR
samples, was re-designed. Some extra samples which
did not belong to the NDR or NPDR classes were
added to the test set of that classification problem.
And the classifiers trained by the training set of NDR
and NPDR data were applied to the new test set.

Ten mfERG records were randomly selected
from the Normal class and were added to the test set,
grouped by NDR and NPDR individuals, in Table 3
(No.3). The confusion matrix in classifying the new
test set is shown in Table 5 (No.1). All ten extra
Normal subjects were recognized as NDR subjects.
Ten PDR individuals were appended to the test set
Table 3 (No.3), and the classification result for this
test set is shown in Table 5 (No.2).

Table 5. Confusion matrix of the classification between NDR
and NPDR when new testing samples were added
No. True labels Classification Total
NDR NPDR
NDR 29 0 29
! NPDR 0 23 23
Normal 10 0 10
NDR NPDR
NDR 29 0 29
2 NPDR 0 23 23

PDR 0 10 10

Four classes of the experimental subjects dis-
cussed in this paper had different retinal dysfunctional
level from none (Normal) to severe (PDR). The
classification result in Table 5 shows that the DR
classification method proposed in this paper is consis-
tent with progression of the retinal dysfunction caused
by diabetic retinopathy.
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